Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel.
نویسندگان
چکیده
Sequencing of the T-type Ca2+ channel gene CACNA1H revealed 12 nonsynonymous single nucleotide polymorphisms (SNPs) that were found only in childhood absence epilepsy (CAE) patients. One SNP, G773D, was found in two patients. The present study reports the finding of a third patient with this SNP, as well as analysis of their parents. Because of the role of T-channels in determining the intrinsic firing patterns of neurons involved in absence seizures, it was suggested that these SNPs might alter channel function. The goal of the present study was to test this hypothesis by introducing these polymorphisms into a human Ca(v)3.2a cDNA and then study alterations in channel behavior using whole-cell patch-clamp recording. Eleven SNPs altered some aspect of channel gating. Computer simulations predict that seven of the SNPs would increase firing of neurons, with three of them inducing oscillations at similar frequencies, as observed during absence seizures. Three SNPs were predicted to decrease firing. Some CAE-specific SNPs (e.g., G773D) coexist with SNPs also found in controls (R788C); therefore, the effect of these polymorphisms were studied. The R788C SNP altered activity in a manner that would also lead to enhanced burst firing of neurons. The G773D-R788C combination displayed different behavior than either single SNP. Therefore, common polymorphisms can alter the effect of CAE-specific SNPs, highlighting the importance of sequence background. These results suggest that CACNA1H is a susceptibility gene that contributes to the development of polygenic disorders characterized by thalamocortical dysrhythmia, such as CAE.
منابع مشابه
Effects of Cav3.2 channel mutations linked to idiopathic generalized epilepsy.
Heron and colleagues (Ann Neurol 2004;55:595-596) identified three missense mutations in the Cav3.2 T-type calcium channel gene (CACNA1H) in patients with idiopathic generalized epilepsy. None of the variants were associated with a specific epilepsy phenotype and were not found in patients with juvenile absence epilepsy or childhood absence epilepsy. Here, we introduced and functionally charact...
متن کاملT-Channel Defects in Patients with Childhood Absence Epilepsy.
Direct sequencing of exons 3 to 35 and the exon–intron boundaries of the CACNA1H gene was conducted in 118 childhood absence epilepsy patients of Han ethnicity recruited from North China. Sixty-eight variations have been detected in the CACNA1H gene, and among the variations identified, 12 were missense mutations and found only in 14 of the 118 patients in a heterozygous state, but not in any o...
متن کاملGenes and molecular mechanisms involved in the epileptogenesis of idiopathic absence epilepsies
Idiopathic absence epilepsies (IAE), that have high prevalence particularly among children and adolescents, are complex disorders mainly caused by genetic factors. Childhood absence epilepsy and juvenile absence epilepsy are among the most common subtypes of IAEs. While the role of ion channels has been the primary focus of epilepsy research, the analysis of mutation and association in both pat...
متن کاملMechanisms by which a CACNA1H mutation in epilepsy patients increases seizure susceptibility.
T-type calcium channels play essential roles in regulating neuronal excitability and network oscillations in the brain. Mutations in the gene encoding Cav3.2 T-type Ca(2+) channels, CACNA1H, have been found in association with various forms of idiopathic generalized epilepsy. We and others have found that these mutations may influence neuronal excitability either by altering the biophysical pro...
متن کاملA profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies.
Highly alternatively spliced genes may provide complex targets for disease mutations. Structural changes created by missense mutations may differentially affect the activity of alternative gene products, whereas missense, silent and non-coding mutations may alter developmental regulation of splice variant expression. CACNA1H is a human gene encoding Ca(v)3.2 low-voltage-activated, T-type calciu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 19 شماره
صفحات -
تاریخ انتشار 2005